Pathways to Habitable Worlds: How to Most Efficiently Recognize Habitable Planets?

Arnaud Salvador

Tyler Robinson, Jonathan Fortney, Mark Marley

Lunar & Planetary Laboratory Habitability, Atmospheres, and Biosignatures Laboratory University of Arizona

Habitability & Life on Other worlds (HALO) workshop – Fréjus, France

LUNAR & PLANETARY LAB December 5, 2024

arnaudsalvador@arizona.edu

Search for Life Elsewhere

The National Academies of SCIENCES • ENGINEERING • MEDICINE

CONSENSUS STUDY REPORT

- Q11. Is there evidence of past or present life in the solar system beyond Earth and how do we detect it?
- Habitable Worlds Observatory

 Detection and characterization of ~25 habitable zone planets ORIGINS, WORLDS, and LIFE

> A Decadal Strategy for Planetary Science & Astrobiology 2023-2032

What would Earth look like if observed from afar? An example in reflected light

- Direct imaging is like taking a picture of the planet but not *yet* as good as that
 - No direct detection of surface liquid water
 - No direct measurements of surface pressure and temperature

Local vs. Distant Observations

- In-situ and abundant measurements
- Direct observations
- Time- and spatially-resolved
- => Highly constrained parameters

- Distant and few measurements
- Sometimes indirect detections only
- Time- and spatially-averaged
- => Highly unconstrained parameters

Pathways to Habitable Worlds

- If we were observing an Earth analog, would we be able to tell that it is an Earth analog?
- What are the requirements to effectively and efficiently recognize a habitable planet?

Future Observations of Earth Analogs in Reflected Light

- What parameters can be confidently constrained/retrieved?
 - e.g., Lupu+ 2016; Nayak+ 2017; Feng+ 2018; Carrión-González+ 2020; Damiano+ 202X; Alei+ 202X; Susemiehl+ 2023; Latouf+ 2023s; Young+ 2024s; Salvador+ 2024

Robinson et al., 2011

Future Observations of Earth Analogs in Reflected Light

- What parameters can be confidently constrained/retrieved?
 - e.g., Lupu+ 2016; Nayak+ 2017; Feng+ 2018; Carrión-González+ 2020; Damiano+ 202X; Alei+ 202X; Susemiehl+ 2023; Latouf+ 2023s; Young+ 2024s; Salvador+ 2024

Robinson et al., 2011

Figure 1-5. The LUVOIR strategy for the searth for life. Blue steps at the top of the figure represent an initial survey optimized to discover habitable planets. Green steps at the bottom of the figure refer to characterization of those planets, confirming habitability and searching for biosignatures. Credit: T. B. Griswold (NASA GSFC)

Figure 1-5. The LUVOIR strategy for the searth for life. Blue steps at the top of the figure represent an initial survey optimized to discover habitable planets. Green steps at the bottom of the figure refer to characterization of those planets, confirming habitability and searching for biosignatures. Credit: T. B. Griswold (NASA GSFC)

Figure 1-5. The LUVOIR strategy for the searth for life. Blue steps at the top of the figure represent an initial survey optimized to discover habitable planets. Green steps at the bottom of the figure refer to characterization of those planets, confirming habitability and searching for biosignatures. Credit: T. B. Griswold (NASA GSFC)

Figure 1-5. The LUVOIR strategy for the searth for life. Blue steps at the top of the figure represent an initial survey optimized to discover habitable planets. Green steps at the bottom of the figure refer to characterization of those planets, confirming habitability and searching for biosignatures. Credit: T. B. Griswold (NASA GSFC)

Different scenarios of prior

- No prior information ٠
- Orbit already constrained •
- Mass already constrained ٠
- Orbit & mass constrained ۲

Prior Radial Velocity survey and/or astrometry

 \Rightarrow Planetary mass and orbit already constrained at the time of detailed characterization

Future Observations of Earth Analogs in Reflected Light

 What parameters can be confidently constrained/retrieved?
 e.g., Lupu+ 2016; Nayak+ 2017; Feng+ 2018; Carrión-González+ 2020; Damiano+ 202X; Alei+ 202X; Susemiehl+ 2023; Latouf+ 2023s; Young+ 2024s; Salvador+ 2024

What observing strategies most efficiently recognize a habitable planet?

• How do *prior observations* and *observational constraints* affect our ability to *characterize the planetary environment*?

Atmospheric "retrieval" tools are used to "find back" (retrieve) the range of model parameters that best reproduce/fit a given set of noisy observations.

Atmospheric "retrieval" tools are used to "find back" (retrieve) the range of model parameters that best reproduce/fit a given set of noisy observations.

 Reflected-light, partial and noisy Earth degraded spectrum: "faux" observations

observed spectrum

Atmospheric "retrieval" tools are used to "find back" (retrieve) the range of **model** parameters that best reproduce/fit a given set of noisy observations.

- Initial guess for planet's atmospheric state (informed by priors): planet size, gravity, atmospheric composition, cloud profiles, thermal profile
- Forward model, i.e., radiative transfer model that generates the corresponding high-res planetary spectrum
- Instrument simulator: add noise and mimic instrument's effects
- => degraded, modeled spectrum

Atmospheric "retrieval" tools are used to "find back" (retrieve) the range of model parameters that best reproduce/fit a given set of noisy observations.

Atmospheric "retrieval" tools are used to "find back" (retrieve) the range of model parameters that best reproduce/fit a given set of noisy observations.

How well does the degraded, model-generated spectrum fit the observed spectrum? \Rightarrow fit metric (χ^2)

Markov Chain Monte Carlo (MCMC) model (emcee) ⇒ which "direction" in parameter space should be further explored ⇒ new atmospheric state

arXiv: 2204.04231

Visible range, SNR = 20, no constraints

Retrieval setup

Parameter	Description	Input	Prior			
Surface conditions						
$\log p_{ m surf}$	Surface pressure (Pa)	$\log(10^5)$	$[1, 10^8]$			
T	Atmospheric temperature [*] (K)	255	[100, 1000]			
$\log A_{ m surf}$	Surface albedo	$\log(0.05)$	[0.01, 1]			
$Gas \ abundances^{\dagger}$						
$\log f_{\rm N_2}$	Molecular nitrogen mixing ratio	$\log(0.78)$	$[10^{-10}, 1]$			
$\log f_{O_2}$	Molecular oxygen mixing ratio	$\log(0.21)$	$[10^{-10}, 1]$			
$\log f_{ m H_2O}$	Water vapor mixing ratio	$\log(3 imes 10^{-3})$	$[10^{-10}, 1]$			
$\log f_{\rm CO_2}$	Carbon dioxide mixing ratio	$\log(4 \times 10^{-4})$	$[10^{-10}, 1]$			
$\log f_{ m CH_4}$	Methane mixing ration	$\log(2 imes 10^{-6})$	$[10^{-10}, 1]$			
$\log f_{ m O_3}$	Ozone mixing ratio	$\log(7 \times 10^{-7})$	$[10^{-10}, 10^{-2}]$			
Cloud parameters						
$\log p_{ m c}$	Cloud-top pressure (Pa)	$\log(6 \times 10^4)$	$[1, 10^8]$			
$\log \Delta p_{ m c}$	Cloud thickness (Pa)	$\log(10^{4})$	$[1, 10^8]$			
$\log au_{ m c}$	Cloud optical depth	$\log(10)$	$[10^{-3},10^3]$			
$\log f_{ m c}$	Cloudiness fraction	$\log(0.5)$	$[10^{-3},1]$			
Planetary bulk parameters						
$\logR_{ m p}$	Planet radius (R_{\oplus})	$\log(1)$	[0.1, 10]			
$\logM_{ m p}$	${\rm Planet\ mass}\ (M_\oplus)$	$\log(1)$	$[0.1,\ 100]^{\ddagger}$			
Orbital parameters						
a	Planetary orbital distance (AU)	1	$[0.1, 10]^{\ddagger}$			
α	Planetary phase angle (°)	90	$[0, 180]^{\ddagger}$			
*Isothermal atmosphere temperature.						
[†] The remaining atmosphere is back-filled with argon.						
[‡] Constrain	ned to 10% of Earth's value when o	[‡] Constrained to 10% of Earth's value when considering precursor observation.				

17 retrieved parameters

Retrieval setup

Parameter	Description	Input	Prior
	Surface condition	ions	
$\logp_{ m surf}$	Surface pressure (Pa)	$\log(10^5)$	$[1, 10^8]$
T	Atmospheric temperature [*] (K)	255	[100, 1000]
$\log A_{ m surf}$	Surface albedo	$\log(0.05)$	[0.01, 1]
	Gas abundance	es^{\dagger}	
$\log f_{\rm N_2}$	Molecular nitrogen mixing ratio	$\log(0.78)$	$[10^{-10}, 1]$
$\log f_{O_2}$	Molecular oxygen mixing ratio	$\log(0.21)$	$[10^{-10}, 1]$
$\log f_{ m H_2O}$	Water vapor mixing ratio	$\log(3 \times 10^{-3})$	$[10^{-10}, 1]$
$\log f_{\rm CO_2}$	Carbon dioxide mixing ratio	$\log(4 \times 10^{-4})$	$[10^{-10}, 1]$
$\log f_{ m CH_4}$	Methane mixing ration	$\log(2 \times 10^{-6})$	$[10^{-10}, 1]$
$\log f_{O_3}$	Ozone mixing ratio	$\log(7 \times 10^{-7})$	$[10^{-10}, 10^{-2}]$
	Cloud paramet	ters	
$\log p_{ m c}$	Cloud-top pressure (Pa)	$\log(6 \times 10^4)$	$[1, 10^8]$
$\log \Delta p_{ m c}$	Cloud thickness (Pa)	$\log(10^{4})$	$[1, 10^8]$
$\log au_{ m c}$	Cloud optical depth	$\log(10)$	$[10^{-3}, 10^3]$
$\log f_{\rm c}$	Cloudiness fraction	$\log(0.5)$	$[10^{-3},1]$
	Planetary bulk part	ameters	
$\logR_{ m p}$	Planet radius (R_{\oplus})	$\log(1)$	[0.1, 10]
$\logM_{ m p}$	Planet mass (M_\oplus)	$\log(1)$	$[0.1,\ 100]^{\ddagger}$
	Orbital parame	ters	
a	Planetary orbital distance (AU)	1	$[0.1, 10]^{\ddagger}$
α	Planetary phase angle (°)	90	$[0, 180]^{\ddagger}$
*Isotherma	al atmosphere temperature.		
[†] The rema	ining atmosphere is back-filled wit	h argon.	

[‡]Constrained to 10% of Earth's value when considering precursor observation.

17 retrieved parameters

Surface conditions P_{surf}, T, A_{surf}

Gas abundances N_2 , O_2 , H_2O , CO_2 , CH_4 , O_3

Cloud parameters Vertical location and extent, optical depth, cloudiness fraction

Planetary bulk parameters* R_p , M_p *

Orbital parameters* Orbital distance, phase angle

How do *prior observations* and *observational constraints* (wavelength coverage + SNR) affect our ability to **characterize the planetary environment**?

How do **prior observations** and **observational constraints** (wavelength coverage + SNR) affect our ability to **characterize the planetary environment**?

Parameter	Variations	Case Description
Wavelength coverage	5	blue & red; red; visible; visible & NIR; NIR
Orbit/mass precursor	3	no constraints; α & a to 10%; $M_{\rm p}$, α , a to 10%

Different scenarios of prior knowledge

- No prior information
- Orbit already constrained
- Orbit & mass constrained

How do **prior observations** and **observational constraints** (wavelength coverage + SNR) affect our ability to **characterize the planetary environment**?

Salvador et al., ApjL (2024)

Salvador et al., ApjL (2024)

Conclusions

• Prior orbit knowledge allows planet radius determination

• Mass prior knowledge does *not* improve atmospheric characterization

Conclusions

• Prior orbit knowledge allows planet radius determination

• Mass prior knowledge does *not* improve atmospheric characterization

Spectral coverage is of major importance in recognizing a habitable environment

• Higher SNR helps for broad spectral coverages

Thank you for your attention!

Funding source: Habitable Wo<u>rlds</u>

Pictures credits: ISS, NASA, ESO, HabEx, LUVOIR, HABLab, ESA, Cassini